The myosin-binding UCS domain but not the Hsp90-binding TPR domain of the UNC-45 chaperone is essential for function in Caenorhabditis elegans.
نویسندگان
چکیده
The UNC-45 family of molecular chaperones is expressed in metazoan organisms from Caenorhabditis elegans to humans. The UNC-45 protein is essential in C. elegans for early body-wall muscle cell development and A-band assembly. We show that the myosin-binding UCS domain of UNC-45 alone is sufficient to rescue lethal unc-45 null mutants arrested in embryonic muscle development and temperature-sensitive loss-of-function unc-45 mutants defective in worm A-band assembly. Removal of the Hsp90-binding TPR domain of UNC-45 does not affect rescue. Similar results were obtained with overexpression of the same fragments in wild-type nematodes when assayed for diminution of myosin accumulation and assembly. Titration experiments show that, on a per molecule basis, UCS has greater activity in C. elegans muscle in vivo than full-length UNC-45 protein, suggesting that UNC-45 is inhibited by either the TPR domain or its interaction with the general chaperone Hsp90. In vitro experiments with purified recombinant C. elegans Hsp90 and UNC-45 proteins show that they compete for binding to C. elegans myosin. Our in vivo genetic and in vitro biochemical experiments are consistent with a novel inhibitory role for Hsp90 with respect to UNC-45 action.
منابع مشابه
The Myosin Chaperone UNC-45 Is Organized in Tandem Modules to Support Myofilament Formation in C. elegans
The UCS (UNC-45/CRO1/She4) chaperones play an evolutionarily conserved role in promoting myosin-dependent processes, including cytokinesis, endocytosis, RNA transport, and muscle development. To investigate the protein machinery orchestrating myosin folding and assembly, we performed a comprehensive analysis of Caenorhabditis elegans UNC-45. Our structural and biochemical data demonstrate that ...
متن کاملThe central domain of UNC‐45 chaperone inhibits the myosin power stroke
The multidomain UNC-45B chaperone is crucial for the proper folding and function of sarcomeric myosin. We recently found that UNC-45B inhibits the translocation of actin by myosin. The main functions of the UCS and TPR domains are known but the role of the central domain remains obscure. Here, we show-using in vitro myosin motility and ATPase assays-that the central domain alone acts as an inhi...
متن کاملUNC-45B chaperone: the role of its domains in the interaction with the myosin motor domain.
The proper folding of many proteins can only be achieved by interaction with molecular chaperones. The molecular chaperone UNC-45B is required for the folding of striated muscle myosin II. However, the precise mechanism by which it contributes to proper folding of the myosin head remains unclear. UNC-45B contains three domains: an N-terminal TPR domain known to bind Hsp90, a Central domain of u...
متن کاملUNC-45 is required for NMY-2 contractile function in early embryonic polarity establishment and germline cellularization in C. elegans.
The Caenorhabditis elegans UNC-45 protein is required for proper body wall muscle assembly and acts as a molecular co-chaperone for type II myosins. In contrast to other body wall muscle components, UNC-45 is also abundant in the germline and embryo. We show that maternally provided UNC-45 acts with non-muscle myosin II (NMY-2) during embryonic polarity establishment, cytokinesis and germline c...
متن کاملChaperoning myosin assembly in muscle formation and aging
The activity and assembly of various myosin subtypes is coordinated by conserved UCS (UNC-45/CRO1/She4p) domain proteins. One founding member of the UCS family is the Caenorhabditis elegans UNC-45 protein important for the organization of striated muscle filaments. Our recent structural and biochemical results demonstrated that UNC-45 forms a protein chain with defined periodicity of myosin int...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of cell science
دوره 124 Pt 18 شماره
صفحات -
تاریخ انتشار 2011